суммируемость - Übersetzung nach Englisch
Diclib.com
Wörterbuch ChatGPT
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:     

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz ChatGPT

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

суммируемость - Übersetzung nach Englisch

ПОНЯТИЕ В МАТЕМАТИЧЕСКОМ АНАЛИЗЕ
Сумма ряда; Бесконечная сумма; Ряд матриц; Числовые ряды; Критерий абсолютной сходимости суммы числовых рядов; Критерий абсолютной сходимости; Сходимость ряда; Сходящийся ряд; Расходящийся ряд; Суммируемость; Частичная сумма; Частичные суммы; Частичная сумма ряда; Числовой ряд
  • <1</math>.
  • Площадь под гиперболой <math>y=1/x</math> в интервале <math>(1,a)</math> равна <math>\ln(a)</math>
  • параболы]]

суммируемость         
f.
summability, integrability
summability         
INFINITE SERIES THAT IS NOT CONVERGENT
Summation method; Summation methods; Summability method; Summability methods; Summability theory; Abel summability; Abel summation method; Divergence to infinity; Summability; Abelian mean; Nõrlund mean; Abel summation; Lindelöf summation; Lindelöf sum; Totally regular summation method; Abel sum; Norlund mean; Lindelof summation; Lindeloef summation; Lindelof sum; Lindeloef sum; Summation theory; Divergent integral; Draft:Divergent Mathematics; Divergence (infinite series); Nonconvergent series; Nonconvergence; Nonconvergent; Ingham summability; Riemann summability; Divergent asymptotic series

[sʌmə'biliti]

общая лексика

суммируемость

существительное

математика

суммируемость

strong summability      

математика

сильная суммируемость

Definition

Расходящийся ряд

ряд, у которого последовательность частичных сумм не имеет конечного предела. Если общий член ряда не стремится к нулю, то ряд расходится, например 1 - 1 + 1 - 1 + ... + (-1) n-1 + ...; примером Р. p., общий член которого стремится к нулю, может служить гармонический ряд 1 + + ...+ +.... Существуют многочисленные классы Р. р., сходящихся в том или ином обобщённом смысле, так что каждому такому Р. р. можно приписать некоторую "обобщённую сумму", обладающую важнейшими свойствами суммы сходящегося ряда. См. Ряд, Суммирование расходящихся рядов и интегралов.

Wikipedia

Ряд (математика)

Ряд, называемый также бесконечная сумма — одно из центральных понятий математического анализа. В простейшем случае ряд записывается как бесконечная сумма чисел:

a 1 + a 2 + a 3 + + a n + {\displaystyle a_{1}+a_{2}+a_{3}+\ldots +a_{n}+\ldots \quad } Краткая запись: n = 1 a n {\displaystyle \sum _{n=1}^{\infty }a_{n}} (иногда нумерацию слагаемых начинают не с 1, а с 0)

Здесь a 1 , a 2 , a 3 {\displaystyle a_{1},a_{2},a_{3}\dots }  — последовательность вещественных или комплексных чисел; эти числа называются членами ряда.

Чтобы присвоить числовому ряду значение суммы, рассмотрим последовательность «частичных сумм», которые получаются, если оборвать бесконечную сумму на каком-то члене:

S 1 = a 1 {\displaystyle S_{1}=a_{1}}
S 2 = a 1 + a 2 {\displaystyle S_{2}=a_{1}+a_{2}}
S 3 = a 1 + a 2 + a 3 {\displaystyle S_{3}=a_{1}+a_{2}+a_{3}}
{\displaystyle \cdots }
S n = a 1 + a 2 + a 3 + + a n {\displaystyle S_{n}=a_{1}+a_{2}+a_{3}+\dots +a_{n}}
{\displaystyle \cdots }

Если последовательность частичных сумм имеет предел S {\displaystyle S} (конечный или бесконечный), то говорят, что сумма ряда равна S . {\displaystyle S.} При этом, если предел конечен, то говорят, что ряд сходится. Если предел не существует или бесконечен, то говорят, что ряд расходится.

Для выяснения ключевого в анализе вопроса, сходится или нет заданный ряд, предложены многочисленные признаки сходимости.

Числовые ряды и их обобщения (см. ниже о нечисловых рядах) используются повсеместно в математическом анализе для вычислений, для анализа поведения разнообразных функций, при решении алгебраических или дифференциальных уравнений. Разложение функции в ряд можно рассматривать как обобщение задания вектора координатами, эта операция позволяет свести исследование сложной функции к анализу элементарных функций и облегчает численные расчёты. Ряды — незаменимый инструмент исследования не только в математике, но и в физике, астрономии, информатике, статистике, экономике и других науках.

Übersetzung von &#39суммируемость&#39 in Englisch